

GO FAST WITH

WebWorkers

WORK & CO

Ivan dﬂikit()v ic

REAL WORLD
EXAMPLE

SERIAL EXECUTION SCENARIO

1 WAITER ALONE

5min

15min

19 min

5min

15min

38 min

5 min

15 min

i PROCESSING
B NO RESPONSE

\‘|| ~«.¢‘,' ' "

w"“\&'i‘l"m
»u,.luvuh .
Wl

.

7o e
(? - ‘

\

1 WAITER ALONE
ASYNCHRONOUS EXECUTION
CENARIO

5min |10 min 15min
Amin BmMIin |90 min 15min
8 min 5min (30 min

15min

i PROCESSING
B NO RESPONSE

H/« W

1 WAITER 1 COOK
PARALLEL EXECUTION SCENARIO

5Bmin |15min
A min bBmin (10 min 15min
8 min 5min (20 min 15 min

i PROCESSING
B NO RESPONSE

- ‘\

~/

1 WAITER 2 COOKS
HIGHLY PARALLEL EXECUTION
SCENARIO

El

5min [(15min

Amin [Smin |15min
8min 5min [5min (15min

i PROCESSING
B NO RESPONSE

ASYNCHRONOUS
EXECUTION SCENARIO
Javascript

PARALLEL EXECUTION SCENARIO
Web Worker

CUSTOMERS' WAIT TIME

WITHOUT RESPONSE
MINUTES MINUTES
SERIAL EXECUTION SCENARIO ASYNCHRONOUS EXECUTION SCENARIO
MINUTES MINUTES

PARALLEL EXECUTION SCENARIO HIGHLY PARALLEL EXECUTION SCENARIO

CUSTOMERS' WAIT TIME
PROCESSING

3 A

SERIAL EXECUTION SCENARIO ASYNCHRONOUS EXECUTION SCENARIO

PARALLEL EXECUTION SCENARIO HIGHLY PARALLEL EXECUTION SCENARIO

WEB
WORKER
DEFINITION

A web worker is a_JavaScript that
runs in the background, independently
of other scripts, without affecting the
performance of the page."

"Web Workers provide a simple means
for web content to run scripts in

background threads. "

USAGE OF
CLIENT
RESOURCES

CURRENT STATE OF TECHNOLOGY

LT

e

mAm

rARE R A AR .

A

rEARRE R A AR,

mAmE

rARE R A AR .

A

RARR R A AR,

L

T

RN

e

T

RN

Y

RS

L

P

AR

T T Iy

A

rARE R A AR,

A

e rsARn e~

A

.
.
«
‘
«

e EE s

PRSI

CEE s R

RS

e EE s

PRSI

e e R

R

EEm AR

A

L

PO

AR

EEm AR

A

T T Iy

A e

PR -

AR

MRS

PR -

MR

RS

T T Iy

A e

T T Iy

A e

rARE R A AR,

mAm

L

‘

AR

EEEE s

RS

[MERR

MRS

Y

(AR

RESOURCE UTILIZATION

D A S L L

e L)
R R R .
e)
R

UNUSED RESOURCES

LT

e

mAm

rARE R A AR .

A

rEARRE R A AR,

mAmE

rARE R A AR .

A

..

.
.
)
’

RS

T

RN

e

T

RN

L

P

AR

T T Iy

A

rARE R A AR,

A

e rsARn e~

A

.
.
«
‘
«

e EE s

PRSI

CEE s R

RS

e EE s

PRSI

e e R

R

EEm AR

A

L

PO

AR

EEm AR

A

PR -

AR

MRS

PR -

T T Iy

A e

T T Iy

A e

rARE R A AR,

mAm

L

‘

AR

EEEE s

RS

[MERR

MRS

Y

(AR

DEDICATED WORKER

SHARED WORKER

SERVICE WORKER

HOW TO
COMMUNICATE
TO

WEB WORKER

MESSAGE
PASSING

"- ‘ Oh! How was the wedding?

Didn't go “>, ask Adrienne

THE STRUCTURED
CLONE ALGORITHM

1he structured clone algorithm is a new algorithm
defined by the HTMLYS specification for serializing
complex JavaScript objects. It's more capable than
JSON in that it supports the serialization of objects
that contain cyclic graphs — objects can refer to objects L S8,
that refer to other objects in the same graph. In Was fun! Took this one just
addition, in some cases, the structured clone algorithm before the wedding started

may be more efficient than [SON.

Hehehe, looks like you had fun

TRANSFERABLE
INTERFACE

1he Transferable interface represents an object
that can be transferred between different
execution contexts, like the main thread and Web

workers.

SIMPLE WEB
WORKER
EXAMPLE

var myWorker hew Worker('worker, js

Multiply number 1: O

first.onchange = function Multiply number 2: O
myWorker.postMessage(| first.value,second.value R .
5w | esult: 0
console LOg !ffaan;ﬂ posted to worker’

second.onchange = function
myWorker .postMessage(| first.value,second.value
console. log

onmessage = function(e
console.log('"Message received from main script'’

var workerResult 'Result: " + (e.datal @ e.datal 1
console.log('Posting message back to main script’

postMessage(workerResult

myWorker.onmessage = function(e
result.textContent = e.data
console.log('Message received from worker'

myWorker.terminate

UNREAL
WORLD
EXAMPLES

Stream Tree

Different values

Update required

The old value is stored in the tree
for quick comparisons

VIRTUAL DOM INSIDE
WEB WORKER

FLUX INSIDE
WEB WORKER

— —

DATALAYER INISIDE
WEB WORKER

APPLICATION
SCALING

HOW USING MORE CLIENT
RESOURCES IMPACTS
OVERALL INFRASTRUCTURE

._4 L P
;‘
| 1

e

e

. 1 EEELELIN
THE |

Jan 11 NET S Jan 15 Jan 17 Jan 19 Jan 21 Jan 23 Jan 25 Jan 27

USERS PER HOUR CHART

COST EFFECTIVE ARCHITECTURE

LOAD RESILIENT ARCHITECTURE

WORK

www.work.co

